A Probability-based Strong Physical Unclonable Function with Strong Machine Learning Immunity
نویسندگان
چکیده
A novel strong physical unclonable function (PUF), called Probability-based PUF (Prob-PUF), is proposed using the stochastic process of trap emission in nano-scaled transistors. For first time, information probability used design. This new approach offers ideal immunity to machine learning (ML) attacks. Since Prob-PUF only stores a mathematical model, it naturally avoids dilemma between requirement large number challenge-response pairs (CRPs) and limited storage space, making potential solution for future secure storage.
منابع مشابه
a generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
Barrel Shifter Physical Unclonable Function Based Encryption
Physical Unclonable Functions (PUFs) are circuits designed to extract physical randomness from the underlying circuit. This randomness depends on the manufacturing process. It differs for each device enabling chip-level authentication and key generation [1] applications. We present a protocol utilizing a PUF for secure data transmission. Parties each have a PUF used for encryption and decryptio...
متن کاملmrPUF: A Novel Memristive Device Based Physical Unclonable Function
Physical unclonable functions (PUFs) exploit the intrinsic complexity and irreproducibility of physical systems to generate secret information. They have been proposed to provide higher level security as a hardware security primitive. PUFs are an emerging and promising solution for establishing trust in an embedded system with low overhead with respect to energy and area. Most current PUF desig...
متن کاملLearning with a Strong Adversary
In this paper, we propose a method, learning with adversary, to learn a robust network. Our method takes finding adversarial examples as its mediate step. A new and simple way of finding adversarial examples are presented and experimentally shown to be more ‘efficient’. Lastly, experimental results shows our learning method greatly improves the robustness of the learned network.
متن کاملmrPUF: A Memristive Device based Physical Unclonable Function
Physical unclonable functions (PUFs) exploit the intrinsic complexity and irreproducibility of physical systems to generate secret information. PUFs have the potential to provide fundamentally higher security than traditional cryptographic methods by preventing the cloning of identities and the extraction of secret keys. One unique and exciting opportunity is that of using the super-high inform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Electron Device Letters
سال: 2021
ISSN: ['1558-0563', '0741-3106']
DOI: https://doi.org/10.1109/led.2021.3130606